BEFORE THE
FEDERAL COMMUNICATIONS COMMISSION
WASHINGTON, D.C. 20554

In the Matter of)
Application by SBC Communications Inc.,)
Pacific Bell Telephone Company, and)
Southwestern Bell Communications Services,) CC Docket No. _________
Inc. d/b/a Pacific Bell Long Distance for)
Provision of In-Region, InterLATA Services in)
California)

AFFIDAVIT OF CAROL A. CHAPMAN

STATE OF TEXAS)
COUNTY OF DALLAS)

TABLE OF CONTENTS
AFFIDAVIT REGARDING WHOLESALE PROVISIONING OF ADVANCED SERVICES

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PARAGRAPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFESSIONAL EXPERIENCE</td>
<td>1</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>3</td>
</tr>
<tr>
<td>LOOP QUALIFICATION</td>
<td>10</td>
</tr>
<tr>
<td>XDSL CAPABLE LOOPS</td>
<td>41</td>
</tr>
<tr>
<td>IDSL OVER 2-WIRE DIGITAL LOOPS</td>
<td>57</td>
</tr>
<tr>
<td>LINE SHARING</td>
<td>62</td>
</tr>
<tr>
<td>SPECTRUM MANAGEMENT</td>
<td>90</td>
</tr>
<tr>
<td>LINE SPLITTING</td>
<td>93</td>
</tr>
<tr>
<td>SUBJECT</td>
<td>PARAGRAPHS</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>UNBUNDLED PACKET SWITCHING FOR ADVANCED SERVICES</td>
<td>101</td>
</tr>
<tr>
<td>PACIFIC’S BROADBAND SERVICE OFFERING</td>
<td>102</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>103</td>
</tr>
<tr>
<td>TOOLBAR EXAMPLE SCREENS</td>
<td></td>
</tr>
<tr>
<td>PACIFIC BELL PROPRIETARY INFORMATION</td>
<td>ATTACHMENT A</td>
</tr>
</tbody>
</table>
I, Carol A. Chapman, being of lawful age and duly sworn upon my oath, do hereby depose and state as follows:

PROFESSIONAL EXPERIENCE

1. My name is Carol A. Chapman. I am an Associate Director in Wholesale Marketing for Southwestern Bell Telephone Company (“SWBT”). I am responsible for monitoring state and federal regulatory proceedings, regulations and orders concerning advanced services that may affect SBC’s thirteen-state Wholesale Marketing operations or current and future interconnection agreements with Competitive Local Exchange Carriers (“CLECs”). In addition, I represent SBC’s Wholesale Marketing positions to regulatory bodies. The primary responsibilities of SBC’s Wholesale Marketing group are to develop and manage wholesale products and services; to support negotiations of local interconnection agreements with CLECs; to participate in state arbitration proceedings; and to guide compliance with the Telecommunications Act of 1996 (“FTA”) and federal and state laws concerning the continued implementation of local exchange service competition. Prior to my current position, my most recent previous position was Area Manager – Product Management. In this position, I was responsible for researching, formulating and communicating SBC’s policy regarding the provision of Unbundled Network Elements (“UNEs”) used for advanced services to CLEC customers.

2. Prior to that time, my job responsibilities included developing and writing the methods and procedures used by SWBT employees to process CLECs’ loop qualification and xDSL-capable loop service requests. I began my career with SBC as
Manager at the Local Service Center ("LSC") in Fort Worth, Texas. In that position, I supervised service representatives who processed CLEC requests for local telecommunications services and handled day-to-day operational issues, questions, and concerns of the CLECs supported by those service representatives.

EXECUTIVE SUMMARY

3. The purpose of my affidavit is to explain Pacific Bell Telephone Company’s ("Pacific’s") compliance with requirements to make advanced services available on a wholesale basis. SBC’s policies and product offerings with respect to xDSL, line sharing, and packet switching are generally developed from a 13-state perspective. Much of the evidence of compliance on these issues, therefore is similar or identical to the evidence provided in my affidavits in the Texas and Kansas/Oklahoma 271 proceedings. As discussed in detail below, Pacific’s advanced services offerings are in compliance with the Federal Communications Commission’s ("FCC’s" or “Commission’s”) UNE Remand Order, Line Sharing Order, and Line

1 Discussions in this affidavit relate to Pacific’s current advanced services product offerings available in new interconnection agreements. Pacific’s current offerings are available in its generic interconnection agreement. Terms and conditions referenced in this affidavit may be found in the interconnection agreement of Level 3. Different terms and order processes may apply to certain interconnection agreements that pre-date Pacific’s current offerings.

2 Pacific’s loop qualification system operates differently than explained in paragraphs 5-8 of my December 11, 2000, FCC reply affidavit in the Kansas/Oklahoma proceeding and in paragraphs 4-6 of my December 8, 2000, reply affidavit in the California state 271 proceedings. These two affidavits were in error in explaining how the loop qualification system software interacts with LFACS in response to a request for electronically stored actual loop make-up information. Since those filings, Pacific has enhanced its loop qualification system. The affidavit of Derrick F. Hamilton provides information concerning Pacific’s provision of mechanized actual loop make-up information with the current loop qualification system.
Sharing Reconsideration Order.

4. While the general processes for ordering xDSL-capable loops and the High Frequency Portion of the Loop Unbundled Network Element (“HFPL UNE”) are largely analogous to those for ordering any other UNE loop, this affidavit specifically focuses upon unique portions of the pre-ordering, ordering and provisioning processes for xDSL-capable loops and the HFPL UNE.

5. Pacific has developed and implemented processes that allow CLECs to offer any type of xDSL service to their end user customers. The processes in place for Pacific’s advanced service offerings have been modeled after the processes utilized in the SWBT region (Arkansas, Kansas, Missouri, Oklahoma, and Texas). Pacific imposes no limits on a carrier’s advanced services offerings as long as the carrier operates within the guidelines set forth in the national industry standards. Pacific also allows CLECs to provision non-standard xDSL technologies. CLECs may provision any of

4 The term “digital subscriber line” (“xDSL”) describes various technologies and services. The “x” in xDSL is a place holder for the various types of DSL services, such as, but not limited to, ADSL (asymmetric digital subscriber line), HDSL (high-speed digital subscriber line), IDSL (ISDN Digital Subscriber Loop), SDSL (symmetrical digital subscriber line), UDSL (universal digital subscriber line), VDSL (very high-speed digital subscriber line), and RADSL (rate-adaptive digital subscriber line).
the various forms of xDSL presumed acceptable for deployment over UNE loops or
the HFPL UNE, and are not limited to the xDSL offerings that Pacific, or its advanced
services affiliate, chooses to offer. By providing access to loop make-up information,
Pacific ensures that CLECs have the unrestricted opportunity to decide whether to
provide xDSL services to its end user customers, the ability to select a particular
xDSL-based technology to offer, and the information necessary to order facilities over
which they may provision such service.

6. Pacific provides Operations Support Systems (“OSS”) for use in conjunction with its
advanced services offerings. Pacific’s OSS offerings are discussed in more detail in
the joint affidavit of Beth Lawson and Steve Huston.

7. On December 9, 1999, the FCC released the Line Sharing Order, which identified the
HFPL as a network element that must be unbundled pursuant to section 251(c)(3) of
the Telecommunications Act of 1996. The Line Sharing Order required incumbent
LECs to provide access to the HFPL by June 6, 2000. Pacific has taken the steps
necessary to implement line sharing in California in accordance with the Line Sharing
Order.

8. Pacific’s current offerings also enable CLECs to engage in line splitting. CLECs may
line split utilizing Pacific’s UNE offerings in California in a manner consistent with
FCC rules including the Line Sharing Reconsideration Order.

9. Further evidence of Pacific’s performance in the provision of advanced services,
including the xDSL-capable loop, the HFPL UNE, and loop qualification is contained
in the affidavit of Gwen Johnson. Additional detail regarding network issues
associated with loops is contained in the affidavit of William Deere. Further
information regarding Pacific’s mechanized query for actual loop qualification information is discussed in the affidavit of Derrick F. Hamilton.

LOOP QUALIFICATION

10. Pacific provides CLECs with non-discriminatory electronic access to pre-order processes for obtaining xDSL-capable loops and the HFPL UNE. The processes by which loop qualification information is provided by Pacific are in full compliance with the *UNE Remand Order* requirements.

11. The *UNE Remand Order* requires that:

 - ILECs must provide requesting carriers with non-discriminatory access to the same detailed information about the loop that is available to the incumbent.\(^5\)

 - ILECs must provide CLECs with the same information that is available to the ILEC in any of its own databases or other internal records including engineering records, plant records, and back office systems.\(^6\)

 - An ILEC is not required to make available through an electronic interface loop make-up information that is not available to itself.\(^7\)

 - ILECs must provide CLECs access to manual loop make-up information within the same time intervals that it is provided to the incumbent LEC’s retail personnel.\(^8\)

\(^5\) *UNE Remand Order*, 15 FCC Rcd at 3885, ¶ 427. As the FCC recognized in the *Kansas/Oklahoma 271 Order* ¶ 121 & n.327, SBC provides advanced services through a separate affiliate in accordance with the SBC/Ameritech Merger Conditions. In California, this affiliate is SBC Advanced Solutions, Inc. (“ASI”).

\(^6\) *Id.* at 3885-886, ¶ 428.

\(^7\) *Id.* at 3886, ¶ 429.

\(^8\) *Id.* at 3887, ¶ 431.
12. The FCC has determined that CLECs must have access to pre-order information and ordering information. CLECs must also have loops provided in a timely and quality manner. As shown below, Pacific has succeeded in providing this functionality to CLECs and allows them a meaningful opportunity to compete using either xDSL-capable loops or the HFPL UNE.

Pre-Ordering for xDSL-capable Loops and the HFPL UNE

13. CLECs, including ASI, submit loop qualification requests for xDSL-capable loops and the HFPL UNE through any of Pacific’s electronic pre-order interfaces (Verigate, DataGate, and EDI/CORBA). The results of the loop qualification requests are returned without any LSC involvement. CLECs, including ASI, have real-time access to the actual loop make-up information, where it is included in Pacific’s electronic databases, as discussed in more detail in the affidavit of Derrick F. Hamilton. CLECs also have the choice between placing an order based on the information available electronically or requesting a manual look-up of any actual loop make-up information not stored in Pacific’s electronic databases.

Loop Make-Up Information

14. “Loop make-up information” is a term that applies to any information regarding a given loop’s physical characteristics. This information includes a variety of elements such as loop length, wire gauge, loop medium (copper or fiber), and information regarding any bridged tap, load coil, or repeaters present on the loop. Historically, Pacific’s network was primarily designed to support Plain Old Telephone Service (“POTS”) service that works well over a wide variety of loop configurations. Because Pacific did not need a mechanized inventory of loop make-up information on
individual loops to provision POTS service, Pacific maintained most of this detailed information in manual records.

15. On the other hand, xDSL technologies have very specific facility requirements that are much more limited than POTS service. Loop make-up information is used to determine whether or not xDSL or line sharing is a viable option for a particular address. Because Pacific’s electronic back-end systems do not contain loop make-up information for many of the loops in the network, Pacific developed “designed loop make-up information” for each distribution area (“DA”)\(^9\) in California. Designed loop make-up information is based upon the standard design for the longest loop serving the end user’s distribution area. Pacific populated this information in a database used for mechanized pre-qualification and loop qualification. Using this database, Pacific provides “real-time” electronic access to loop make-up information even when no actual loop make-up information is contained in Pacific’s electronic databases (see below for a description of “actual loop make-up”). CLECs may use this information to determine the probability that a particular loop will be able to support the service envisioned. Pacific provides this information for use either independent of, or in conjunction with, a CLEC’s prospective customer contact.

16. “Actual loop make-up information,” on the other hand, is specific loop make-up information for an actual loop for the requested end user’s address. No loop reservation occurs until an actual order is placed. In some cases, actual loop make-up information is inventoried in Pacific’s electronic databases. As discussed in the

\(^9\) A Distribution Area is a geographical area served by the same feeder facilities through a single serving area interface.
affidavit of Derrick F. Hamilton, Pacific provides CLECs with electronic access to loop make-up information inventoried electronically in compliance with the requirements of the \textit{UNE Remand Order}.

17. When actual information is not available electronically, a CLEC ordering xDSL-capable loops or the HFPL UNE is presented an option. It may proceed on the basis of the designed loop make-up information as discussed above. Alternatively, they can request a manual look-up of the actual loop make-up information. If the CLEC chooses the latter option, it can submit a request directly to Outside Plant ("OSP") Engineering through Pacific’s Verigate, DataGate, or EDI/CORBA interfaces. The LSC is not involved in this process. Once OSP Engineering has completed the request, the information will be updated in the mechanized loop qualification system for electronic retrieval.\footnote{The results of the manual loop qualification request are stored in the mechanized loop qualification system for 90 days.} In addition, Pacific’s electronic provisioning systems are also updated. The updated information will be available electronically for future loop qualification requests for loops connected to the end user’s premise.\footnote{See the affidavit of Derrick Hamilton for additional information regarding the mechanized loop qualification system.}

\textit{Pre-Qualification}

18. Pre-qualification is an optional “real-time” screening tool that provides general information about Pacific’s facilities, allowing the accessing carrier immediately to draw some preliminary conclusions about whether advanced service may be appropriate for a given geographic area or for a particular customer as well as the type of xDSL service that could be used. Pre-qualification is available \textit{in addition} to the
loop qualification option discussed more fully below. Pacific’s pre-qualification system offers several pieces of data:

- A “Green, Yellow, or Red” indicator which, as explained below, is a graphical summarization of the data. This information is helpful because the various types of advanced services technologies function best at different distances from the central office.

- 26-gauge equivalent loop length (the network designed length of the loop converted to the equivalent length had the entire loop consisted of 26 gauge wire as referenced in the current draft of the ANSI standard for spectrum management).

- Design Cable Gauge Make-Up (a break down of the loop length, by wire gauge, for the network designed loop make-up information).

- Wire Center Code (the NPA/NXX combination identifying the wire center that serves the specified address).

- Message (this field may display additional information not contained in any of the above fields or it may be blank).

- A Taper Code (Pacific internal identifier which denotes the serving terminal. This code does not impact the loop’s ability to support xDSL service in any way).
The Mechanics of Pre-Qualification

19. CLECs may access pre-qualification information through Pacific’s DataGate, EDI/CORBA,12 or Verigate interfaces. All interfaces will retrieve the same data. To access pre-qualification data using Verigate via the Toolbar application, a CLEC first selects Verigate from the Toolbar application. The CLEC then enters the address validation screen and fills in the end user’s address on the screen displayed. Once the address has been verified, the CLEC clicks on the “Loop Qualification” button and selects the “Pre-qualification Summary” option from the Loop Qualification menu. An example of a Toolbar screen from the Verigate User Guide is provided as Attachment A to this affidavit. CLECs that utilize one of the application-to-application interfaces (DataGate or EDI/CORBA) may program their application in a similar manner.

The Results of Pre-Qualification

20. As noted above, the Pacific pre-qualification system returns data fields including the 26-gauge equivalent theoretical loop length (\textit{e.g.}, the end user is 13,200 feet from central office); and a “Red, Yellow or Green” status indicator, signifying that the loop falls into one of three categories. Because the various forms of xDSL service operate at differing degrees of effectiveness depending upon the distance separating the end user from the central office, the theoretical loop length provides CLECs with a helpful tool for narrowing the types of xDSL they may be able to offer a given end user. The

12 Due to the lack of OBF Industry Guidelines for EDI/CORBA pre-qualification, the EDI/CORBA interface provides the same pre-qualification information via the Design loop qualification transaction.
“Red, Yellow or Green” status indicator provides an additional graphical representation of the information available in pre-qualification.

21. The color status “Green” indicates that the theoretical designed loop for the DA serving the specified address has a 26 gauge equivalent loop length between zero and 12,000 feet, and that copper facilities are present in the DA. Because a copper loop that is 12,000 feet or less in length will likely be capable of supporting some form of xDSL service without additional conditioning, “Green” typically signifies that the loop is a strong candidate for ADSL and other xDSL technologies. In addition, Pacific has committed to automatically remove any load coils, repeaters and/or excessive bridged tap in excess of 2,500 feet at no charge to the CLEC for loops with a pre-qualification status of “Green.”

22. “Yellow” indicates that the 26 gauge equivalent loop length of the theoretical design loop for the DA serving the specified address falls between 12,001 and 17,500 feet, and that copper facilities are present in the DA. A “Yellow” status signal suggests CLECs may want to rule out those xDSL technologies requiring loop lengths of 12,000 feet or less, and otherwise may indicate the need for a more detailed investigation of loop makeup information to determine the physical characteristics of the loop.

23. “Red” indicates that the 26 gauge equivalent loop length of the theoretical designed loop for the DA serving the specified address is longer than 17,500 feet and/or that
the DA is served exclusively by digital loop carrier ("DLC") or fiber. If a CLEC utilizes technology that may be capable of working on this type of facility, the “Red” signal indicates the need for further loop investigation to determine the physical characteristics of the loop. Copper loops over 18,000 feet need load coils to support voice service. Removing these load coils would degrade the voice service. As a result, a “Red” response would indicate that the loop will probably not be a candidate for line sharing.

24. In short, the “Red, Yellow, and Green” status indicators are a quick, graphical representation of the available loop information useful in determining whether it will be possible to provide an advanced service to a particular end user, and the types of advanced service potentially capable of serving that end user. The more specific pre-qualification information provided by Pacific regarding loop length allows the inquiring carrier to better identify the potential capabilities of the loop.

Loop Qualification

25. “Loop qualification” provides the detailed, customer-specific loop make-up information the service provider needs to make a decision regarding the provisioning of an advanced service. CLECs may request electronically stored loop qualification or manually stored loop qualification information. This loop make-up information

13 Unlike the copper-based xDSL technologies such as ADSL, HDSL and SDSL, IDSL is capable of operating over DLC. IDSL is also capable of operating at greater distances than many other xDSL technologies. IDSL does not require loop qualification at any length. Accordingly, once a CLEC is apprised that the loop is served exclusively by DLC or finds that the loop’s length will prevent the successful deployment of the CLEC’s chosen technology, the CLEC may immediately place an order for a 2-Wire Digital Loop without going through the loop qualification process. If the CLEC is collocated at the Remote Terminal ("RT") serving the end user’s address, it would also be able to request an xDSL-capable sub-loop or line shared subloop from the RT to the customer’s premises in order to access the copper portion of the loop.
includes the data a carrier needs to determine the loop’s ability to support a particular xDSL service, such as the 26 gauge equivalent loop length; the length of the loop by gauge; the quantity of bridged tap, load coils and repeaters present on the loop; the length of the feeder cable (“F1”) and the distribution cable (“F2”) respectively; the presence (or absence) of DLC in the loop; and the presence of potentially disturbing technologies in the same and/or adjacent binder groups as well as other loop make-up information.

26. Pacific provides CLECs with electronic access to actual loop make-up information contained in Pacific’s electronic systems through Verigate, DataGate, and EDI/CORBA. CLECs may also request a manual look-up of loop qualification information not contained in Pacific’s electronic databases through any of these mechanized interfaces. If actual loop make-up information is returned from Pacific’s electronic back-end systems, Pacific provides this information to the CLEC electronically; otherwise, Pacific’s electronic response provides the CLEC with designed loop make-up information. The completed mechanized loop qualification indicates whether the information is actual or designed. If the CLEC desires further loop make-up information, it may request that Pacific review its manual records for additional loop make-up information.

The Mechanics of the Loop Qualification Process

27. A CLEC can request electronically stored loop qualification information via Verigate, DataGate, or EDI/CORBA. A CLEC also has the option of submitting a request for manually stored loop make-up information via these mechanized interfaces. When a CLEC requests manually stored loop make-up information, the request is forwarded
to Outside Plant (“OSP”) Engineering electronically. OSP Engineering is obligated to complete the request within three to five business days and update the information in the loop qualification database where it is available for viewing by the CLEC. In addition, upon request, Pacific will return the results of manual look-ups to an e-mail address pre-designated by the CLEC.

28. A completed manual loop qualification provides information contained in Pacific’s electronic and paper records about the makeup of a particular loop where a complete loop exists to that premise. For those instances where a complete loop does not exist to that premise, the makeup information returned is representative of a loop which could be assembled to serve that premise.14 This information allows a CLEC to determine whether a loop to the requested premise is “capable of supporting xDSL and other advanced technologies,”15 and to plan for and avoid provisioning problems stemming from technical or other facility-related limitations.

29. The CLEC loop qualification process is measured by Performance Measures, which are discussed in the affidavit of Gwen Johnson.

14 See UNE Remand Order, 15 FCC Rcd at 3885, ¶ 427.
15 UNE Remand Order, 15 FCC Rcd at 3884-885, ¶ 426.
30. An illustration of how CLECs obtain loop make-up information follows:16

Loop Qualification Process

- CLEC requests mechanized loop qualification for validated address
- CLEC receives real-time loop qualification response.

End of process. CLEC makes business decision based on available electronically stored loop qualification information.

Does CLEC want Pacific to perform a manual look up?

- YES: CLEC submits electronic request for manual look-up of loop make-up records.
- NO: CLEC views completed loop qualification via Verigate, DataGate, EDI or CORBA.

OSP Engineering performs loop qualification and updates information.

- YES: Completed loop qualification results sent to CLEC’s designated e-mail address.
- NO: CLEC views completed loop qualification via Verigate, DataGate, EDI or CORBA.

31. In state proceedings, CLECs have contended that when Pacific provides actual loop make-up information to a CLEC, Pacific somehow “filters” the information or picks...

16 The loop qualification process is the same whether the CLEC intends to use the loop make-up information to order an xDSL-capable loop or an HFPL UNE.
the loop based upon arbitrary guidelines. This is not the case, as explained in the affidavit of Derrick F. Hamilton.

32. Using loop qualification, CLECs have nondiscriminatory access to the information the CLEC needs to rely on to determine whether a loop is capable of supporting its advanced services offerings.

33. CLECs have also raised the issue of imperfect loop make-up data in the state proceedings. However, Pacific provides CLECs in California with precisely the same loop make-up information it uses for its day-to-day internal operations. CLECs have improperly suggested that Pacific should be required to create systems that are superior to that which Pacific provides itself. One of the reasons xDSL is such an attractive product is that it is capable of providing high-speed internet access service over relatively inexpensive facilities that are already present in the network. The positive side of this is that high-speed internet access services can be provided to many customers without redesigning the network and placing new facilities as was previously the case. As a result of utilizing facilities originally designed for POTS service, data providers can make broadband services affordable for the mass market. However, for the same reasons that xDSL is so attractive to data providers – readily available existing network facilities – it also creates challenges associated with utilizing a facility designed and inventoried for POTS service for a more particular, broadband service.

34. Unfortunately, CLECs want the best of both worlds. They want the cheap, existing network, but they also want ILECs to be obligated to revamp their entire inventory
that currently meets the ILECs’ needs in order to better accommodate the CLEC’s business plans.

35. Even though Pacific does not need to perform this type of massive overhaul of its inventory records for its own purposes, CLECs in the state proceedings suggested Pacific do so, and receive no compensation whatsoever for the effort.

36. Pacific has developed a Yellow Zone Trial in an attempt to address in a practical manner some of the CLECs’ concerns regarding available loop make-up information. As the name suggests, the processes associated with the Yellow Zone Trial are being evaluated by the trial participants to determine whether they are helpful to the CLECs and whether they are practical for Pacific to implement on a permanent basis. Any interested CLEC may participate in the trial. The Accessible Letters announcing the most recent trial extension are CLECC01-166 and CLECC01-167.17

37. The purpose of the trial is three-fold. First, the trial seeks to eliminate the need for performing a manual loop qualification on loops between zero and 17,500 feet. Second, the trial seeks to shorten the overall installation period. Third, the trial seeks to mitigate some of the effects of imperfect loop make-up information.

38. Under the trial, CLECs do not need to perform a manual loop qualification on xDSL-capable loops or HFPL UNE orders for loops that are between zero and 17,500 feet. Instead, the CLEC simply performs a mechanized loop qualification and then submits a Local Service Request ("LSR") for an xDSL-capable loop with a five-business day due date or an HFPL UNE with a three business day due date. The LSR must indicate

17 The accessible letters announcing the extension of the Yellow Zone Trial for xDSL-capable loops and the HFPL UNE are available on the website at https://clec.sbc.com.
that the order should be processed as a Yellow Zone Trial order. On the day after the
due date, the CLEC may perform a synchronization test. If the CLEC is unable to
achieve synchronization, the CLEC will submit a trouble ticket. If it is determined
that conditioning is needed, the CLEC may choose to authorize any desired
conditioning or disconnect the requested xDSL-capable loop or HFPL UNE. Pacific
then performs the conditioning within five additional business days.

39. This process provides a number of benefits. First, by eliminating the need for manual
loop qualification, the CLEC eliminates the manual qualification period. In addition,
the CLEC eliminates any additional costs associated with manual loop qualification.
Second, by testing the actual provisioned loop prior to authorizing conditioning, the
impact of any imperfections in the loop make-up information is minimized, and the
CLEC will be able to make a better determination of the loop’s need for conditioning
based upon actual performance as opposed to raw data. After the loop is provisioned,
the CLEC can make its commitments to its customers based upon actual loop
performance as opposed to possibly imperfect loop make-up information. If
conditioning is needed and desired by the CLEC, the overall provisioning interval is
the same as or shorter than if conditioning were ordered on the initial LSR. In
addition to any time saved on the actual provisioning interval, the CLEC also saves on
any time it would have spent waiting on the completion of a manual loop qualification
request.

40. The Yellow Zone Trial is an example of how Pacific attempts to develop new
processes and procedures to address CLEC operational concerns in a practical
manner. The discussed above, the trial is currently scheduled to continue through
July 6, 2001. Although it is still too early to determine whether or not the processes in the Yellow Zone Trial will be implemented on a permanent basis, Pacific is committed to continuing to work with CLECs to find innovative, practical solutions to operational issues.

XDSL-CAPABLE LOOPS

Ordering

Power Spectral Density ("PSD") Information

41. When adjacent loops in a binder group are used to provide divergent technologies, their signals can interfere with and interrupt one another. To minimize this potential interference, the American National Standards Institute ("ANSI"), a national industry standards setting body, has developed “power spectral density masks” ("PSD masks"), which define national guidelines on signal power density across various frequencies. Since new and evolving technologies frequently fall within existing PSD masks, which are broad enough to cover a number of technologies, carriers can rely upon the PSD mask standards to provision new technologies without causing spectral incompatibility. PSD numbers\(^{18}\) (or PSD categories) are tied to the PSD masks and thus to the underlying national standards, providing a method for monitoring the interference potentially caused by new technologies.

42. When a CLEC orders an xDSL-capable loop, that CLEC must inform Pacific of the PSD for the particular service it plans to offer so that Pacific may inventory potentially interfering technologies by PSD. A requesting CLEC

\(^{18}\) PSD numbers are based on ANSI national standards for spectrum management.
provides this information via the use of Network Channel ("NC") and Network Channel Interface ("NCI") codes on the LSR, which are established by national industry standard groups. In addition to relaying PSD information, the NC and NCI codes will notify Pacific of the type of loop being requested. Pacific utilizes this information for provisioning and inventory purposes.

The Mechanics of the xDSL-Capable Loop Order Process

43. The order process of xDSL-capable loops in California is similar to the order processes in place in the SWBT states. When requesting an xDSL-capable loop, the CLEC simply submits a complete and accurate LSR19 via facsimile or through Pacific’s LEX or EDI electronic interfaces. The LSR should indicate the PSD mask of the particular xDSL technology that the CLEC envisions providing for inventory and loop provisioning purposes.

44. Upon receipt of an accurate electronically submitted LSR, Pacific’s mechanized order processing systems automatically initiate a mechanized loop qualification request.

45. If the loop qualification results indicate that the loop matches the criteria specified on the CLEC’s LSR, the order is issued automatically, and a Firm Order Confirmation ("FOC") is sent to the CLEC20.

46. If the loop fails to meet the minimum criteria specified by the CLEC, the LSR is rejected. The CLEC may then cancel the request or supplement the original

19 The CLEC Online Website may be utilized to determine what information must be included on the LSR. See joint affidavit of Beth Lawson and Steve Huston for details.

20 FOCs can be returned mechanically or manually, depending on the method the CLEC used when submitting the LSR.
LSR to order the loop “as is” or with conditioning. The CLEC may also opt to change the specified PSD for the requested loop at any time prior to the FOC’s issuance.

47. Pacific has made various options available to CLECs. First, a CLEC can advise Pacific it requires a loop that meets the industry standards for the CLEC’s chosen PSD. If the loop serving the end user does not meet these standards, Pacific notifies the CLEC before a service order is issued. The CLEC then determines whether to proceed with the order. This option allows CLECs to request that a loop be provisioned only if it meets the relevant industry standards. If the loop fails to meet the standard for the designated type of xDSL, the CLEC can also choose to provision a non-standard technology, recognizing the potential risks.

48. Second, a CLEC can specify on the LSR that it will take the loop “as is,” regardless of whether the loop meets the specifications set by the national standards for the type of xDSL the CLEC intends to provision. The “as is” option allows a CLEC to avoid sending a supplemental LSR should the loop fail to meet current industry standards for the CLEC’s desired xDSL technology. A CLEC initiates this arrangement by including the “UALNQX” ‘SPEC code’ on an LSR. Pacific will note on the service order whether the loop meets the parameters of the CLEC’s chosen PSD mask. This information will help to identify non-standard xDSL technologies if an end user’s service is degraded.

49. Whenever a CLEC chooses to use the “as is” one-step option, Pacific strongly recommends that the CLEC perform a mechanized loop qualification before submitting an LSR because Pacific will issue a service order regardless of the
physical characteristics of the loop. The CLEC does have the option of sending a supplemental LSR before or after FOC to request conditioning if desired.

50. Third, a CLEC can specify on the initial LSR that it desires Pacific to perform conditioning shown to be available by the loop qualification results. CLECs also have the option of requesting conditioning at any time after the loop has been provisioned by Pacific.21

51. When the pre-qualification is “Green,” indicating that the 26 gauge equivalent theoretical loop length is 12,000 feet or less and the loop is not served exclusively by DLC, the CLEC can be reasonably certain that the loop will not contain load coils, repeaters, or excessive bridged tap.22 Nevertheless, if such elements are found, Pacific operations will remove these devices at no charge to the CLEC. The CLEC does not need to request conditioning in this situation. Pacific will condition the loop automatically if needed. The standard offered provisioning interval for a non-conditioned loop will apply.

21 In addition to the standard ordering options listed above, CLECs may also place orders utilizing the process for the Yellow Zone Trial described previously in this affidavit.

22 Excessive bridged tap is defined as a bridged tap in excess of 2,500 feet.
52. An illustration of the xDSL-capable loop order process follows:

XDSL-Capable Loop Order Process

1. **CLEC submits valid LSR to Pacific**
2. Pacific performs mechanized loop qualification*
3. **Does loop meet requirements specified by the CLEC?**
 - **YES**: Service order issued*
 - **NO**: LSR returned to CLEC*
4. **Does cancellation received?**
 - **YES**: LSR is canceled
 - **NO**: CLEC submits valid supplemental LSR

* These order processing functions are normally handled electronically without human intervention.
Provisioning

Terms and Conditions

53. Pacific provisions xDSL-capable loops for CLECs under terms and conditions negotiated in interconnection agreements. Any CLEC can negotiate a customized agreement with Pacific, or can simply adopt the interconnection, service and/or network element arrangements contained in existing, approved agreements.

54. Pacific does not require a CLEC to request available loop conditioning. Rather, a CLEC always has the option of obtaining a particular xDSL-capable loop “as is,” or with any desired available conditioning (As mentioned previously, Pacific automatically performs conditioning free of charge to remove load coils, repeaters and/or bridged tap in excess of 2,500 feet for loops with a 26 gauge equivalent loop length of less than 12,000 feet.).

Time Intervals for Provisioning.

55. Whether or not conditioning is required, Pacific offers CLECs xDSL-capable loop provisioning intervals that are the same or better than the provisioning intervals offered to Pacific’s advanced services affiliate. Provisioning intervals are determined by whether a non-conditioned or conditioned loop is requested. These two provisioning categories are defined as indicated below.
| Conditioned | Includes all orders where conditioning is requested and specified on the LSR. |
| Non-Conditioned | Includes all orders where conditioning is not specified on the LSR and for loops with a 26 gauge equivalent loop length of less than 12,000 feet where loop conditioning is performed at no charge (Conditioning that would be performed at no charge for loops with a 26 gauge equivalent loop length of less than 12,000 feet includes the removal of load coils, repeaters, and excessive bridged tap (bridged tap in excess of 2,500 feet)). |

56. Under Pacific’s current offering, the provisioning and installation interval for the xDSL-capable loop, where no conditioning is requested and for orders of one to 20 loops per order or per end user location, is five business days. For an xDSL-capable loop where conditioning is requested, on orders for one to 20 loops per order or per end user customer location, the provisioning and installation interval is ten business days. For CLEC requests of more than 20 xDSL-capable loops per order or per end user location, where no conditioning is requested, Pacific will provision the request within 15 business days, as agreed upon by the parties. Orders for more than 20 xDSL-capable loops per order which require conditioning will have a provisioning and installation interval agreed to by the parties. In each instance, Pacific offers CLECs provisioning intervals in parity with Pacific’s advanced services affiliate’s provisioning intervals.

IDSL OVER 2-WIRE DIGITAL LOOPS

57. Pacific allows CLECs to provision IDSL over a 2-wire digital loop (“Basic Rate Interface loop” or “BRI loop”). However, as noted in the Texas 271 proceeding, there
are challenges associated with provisioning IDSL over a loop designed to support ISDN.23 These challenges are primarily due to two issues.

58. First, due to differences in IDSL and ISDN technologies, CLECs provisioning IDSL over a BRI loop may be unable to achieve the desired level of service on a loop designed to support ISDN on certain DLC systems.

59. Second, Pacific has been unable to fully test the capabilities of a BRI loop provisioned over DLC. As a result, provisioning difficulties that have been identified during the provisioning process when Pacific installs a retail or resale ISDN service may not be identified on a BRI loop, because Pacific does not provide the digital signal and could not test through the end user’s equipment.

60. Pacific has worked diligently to develop a solution to these operational concerns. As a result of these work efforts, Pacific is developing a new loop offering. Pacific plans to make the new IDSL-capable loop offering available later this year.

61. In order to resolve the provisioning difficulties caused by Pacific’s prior inability to fully test the BRI loop, as part of the IDSL product offering, Pacific is upgrading the TPI 550 B test sets used by Pacific technicians and installing new TPI 550 B+ in central offices to ensure the IDSL product offering has been provisioned correctly. SBC has budgeted over two million dollars to provide the upgrades necessary to support the new IDSL-capable loop offering in central offices where BRI loops have been provisioned throughout its 13-state region. In addition to the planned IDSL-capable loop offering discussed above, Pacific has recently implemented process improvements that are discussed in the affidavit of Richard J. Motta.

23 See Texas 271 Order at ¶ 301.
LINE SHARING

62. This section will show how the steps required for the successful ordering of line sharing, otherwise known as the HFPL UNE, are nearly identical to the steps for ordering a stand alone xDSL-capable loop which were described in the paragraphs above.

63. As required by the *Line Sharing Order* and with the California decision (D.00-09-074) Pacific has unbundled the HFPL. This new HFPL UNE offering was developed in extensive collaboration with interested CLECs and was patterned after the xDSL-capable loop offering which has been found by the FCC to be 271 compliant in Texas. As explained in the Loop Qualification section above, the loop qualification procedures for the HFPL are identical to the procedures for xDSL-capable loops. The order process was also modeled after the xDSL-capable loop order process with only minor modifications necessary to enable the CLEC to communicate the additional information necessary for line sharing (*i.e.*, the facility termination location information and the telephone number of the line to be shared). As part of the collaborative development of Pacific’s HFPL offering, Pacific participated in a multi-regional SBC line sharing trial prior to the line sharing “live date” in order to facilitate a smoother roll-out of Pacific’s HFPL UNE.

HFPL Product Development

64. In the *Line Sharing Order*, the FCC determined that the high frequency portion of the loop was a UNE. The *Line Sharing Order* directed ILECs to provide unbundled access to the high frequency portion of the loop to CLECs seeking to provide an
xDSL-based service that meets one of the FCC’s criteria regarding the presumption of acceptability for deployment on the same loop as the analog voice service. The *Line Sharing Order* only required ILECs to provide such unbundled access to a single requesting carrier for use at the same customer address as the traditional POTS analog voice service provided by the incumbent.

65. The *Line Sharing Order* recognized that the ILECs would require approximately 180 days from the date the order was released (*i.e.*, June 6, 2000) to make specific OSS systems modifications necessary to provide access to the higher frequency portion of the loop. Pacific allowed CLECs to place line sharing orders on May 29, 2000, one week prior to the FCC’s required implementation date.24

66. Line sharing as mandated in the *Line Sharing Order* applies to:

- Two carriers – one voice and one data (*Line Sharing Order*, 14 FCC Rcd at 20,948, ¶ 74) – with service to the same customer for both voice and data at the same customer address as the traditional POTS analog voice service provided by the incumbent, *i.e.*, one customer per loop (*Id.*).

- xDSL technologies that do not use the frequencies immediately above the voice band, preserving a “buffer” zone to ensure the integrity of the voiceband traffic (*Id.* at 20,943-44, ¶ 64).

- xDSL technologies that do not interfere with analog voice band transmission (*Id.* at 20,946-47, ¶¶ 70-71).

- Lines that carry traditional POTS analog voice band services provided by the

24 CLECs participating in the line sharing trial were able to place trial orders prior to the May 29, 2000 "live" date.
ILEC. If the ILEC’s retail POTS service is disconnected, for whatever reason, the data provider must purchase the entire stand alone loop to continue providing xDSL to the customer. Similarly, incumbent carriers are not required to provide line sharing to a requesting carrier purchasing a combination of network elements known as a UNE platform (Id. at 20,947-48, ¶¶ 72-73).

67. As suggested in the Line Sharing Order,25 Pacific developed its HFPL offering through extensive collaboration between Pacific and the CLEC community. As the first step toward complying with the Line Sharing Order, Pacific, in concert with other SBC LECs and various CLECs, conducted a line sharing trial in all of its ILEC operating company regions. These trial sites were selected with CLEC input.

- Two central offices in the SWBT region (Addison and Emerson).
- Two central offices in the Ameritech region (Lakeview and Hinsdale).
- One office in the SNET region (New Haven 03).
- Two central offices in Pacific region (San Francisco 12 and San Jose 12).

68. Now that line sharing is commercially available, SBC is continuing to work collaboratively with the CLECs on an ongoing basis to resolve issues as they arise. Throughout the trial and at its conclusion, SBC and participants reviewed the key findings.

69. During the collaborative process, CLECs requested that Pacific voluntarily provide splitters for line sharing. After evaluating the request and Pacific’s system capabilities, Pacific developed an offering under which Pacific agreed to provide

25 Line Sharing Order, 14 FCC Rcd at 20,971-72, ¶ 128.
splitters to CLECs purchasing the HFPL UNE on a line-at-a-time basis. The sites for Pacific’s initial deployment of these splitters was determined by interested CLECs. Pacific has completed the installation of splitters in the central offices in California that were agreed to during the collaborative process. Specifically, Pacific voluntarily provides splitters for line sharing in over three hundred central offices in California. CLECs also have the option of providing their own splitters. Pacific made this voluntary offering, which goes beyond the FCC’s requirements, available to CLECs because some CLECs stated that they would not have been able to install their own splitters in time to begin line sharing at the initial roll-out of the offering. However, the initial roll-out is complete, and Pacific reserves the right to evaluate, and potentially discontinue, its splitter offering in the future, subject, of course, to the requirements of its interconnection agreements.

70. In addition to the interim terms established by the CPUC D.00-09-074, in an effort to foster entry into the market, Pacific has voluntarily made interim terms and conditions available to CLECs that are currently negotiating a line sharing amendment to their interconnection agreement. Pacific’s interim appendix offers firm prices and conditions for line sharing that CLECs can operate under while they are negotiating or arbitrating permanent terms and conditions of their interconnection agreement. In this manner, Pacific has provided a means for an interested CLEC to enter the market quickly while preserving the CLEC’s right to negotiate or arbitrate desirable terms and conditions.

71. As a result of the significant similarities between ordering and provisioning xDSL and line sharing, and the progress made during the cooperative line sharing trial, Pacific is
in full compliance with the FCC’s Line Sharing Order, and in particular, Pacific has the necessary pre-ordering, ordering and provisioning processes in place to provide line sharing to CLECs in a nondiscriminatory manner. These nondiscriminatory processes further ensure a level playing field among unaffiliated and affiliated advanced services providers alike.

Ordering

72. The order flows for line sharing in California are also similar to those already examined and found to be acceptable in the Kansas/Oklahoma 271 proceedings and are based on the flows originally developed for xDSL-capable loops. Orders for the HFPL UNE are submitted in exactly the same manner and through the same interfaces as the xDSL-capable loop.

73. An LSR for the HFPL UNE is basically the same as an LSR for a stand-alone xDSL-capable loop. The minor differences in the fields utilized when ordering the HFPL UNE are due to the unique aspects of line sharing. Unlike a stand-alone xDSL-capable loop that does not have an associated telephone number, when a CLEC purchases the HFPL UNE, the CLEC must provide the telephone number of Pacific’s voice service that occupies the low frequency portion of the loop to be shared. The CLEC must also provide their desired assignment information related to the provision of the splitter.

74. Aside from these minor differences in the completion of the LSR itself, the LSR process for the HFPL UNE follows the exact same flows as the xDSL-capable loop.
Power Spectral Density (“PSD”) Information

75. The same potential interference concerns explained for xDSL-capable loops are applicable for the HFPL UNE. Therefore, as with xDSL-capable loops, when a CLEC orders the HFPL UNE, that CLEC must inform Pacific of the PSD for the particular POTS compatible service it plans to offer so that Pacific may inventory potentially interfering technologies by PSD. A requesting CLEC provides this information via the use of Network Channel (“NC”) and Network Channel Interface (“NCI”) codes on the LSR, which are established by national industry standard groups. In addition to relaying PSD information, the NC and NCI codes will notify Pacific of the type of loop being requested, in this case the HFPL UNE. Pacific utilizes this information for provisioning and inventory purposes.

The Mechanics of the HFPL UNE Order Process

76. Just as with the stand-alone xDSL-capable loop, when requesting the HFPL UNE, the CLEC simply submits a complete and accurate LSR\footnote{The CLEC handbook explains what information must be included on the LSR. See the joint affidavit of Beth Lawson and Steve Huston for details.} for ordering an xDSL-capable loop via facsimile or through Pacific’s LEX or EDI electronic interfaces. The LSR should indicate the PSD mask of the particular xDSL technology that the CLEC envisions providing over the HFPL for inventory and loop provisioning purposes.\footnote{At this time, the voice compatible xDSL technologies provisioned over the HFPL are typically one of the asymmetric technologies such as ADSL, RADSL and G-Lite that comply with PSD mask number five. However, in the future, new compatible technologies may be developed that comply with other PSD masks.}
77. Just as with the xDSL-capable loop, upon receipt of an accurate electronically submitted LSR, Pacific’s mechanized order processing systems automatically initiate a mechanized loop qualification request.

78. Just as with the xDSL-capable loop, if the loop qualification results indicate that the loop matches the criteria specified on the CLEC’s LSR, the HFPL order is issued automatically, and a Firm Order Confirmation (“FOC”) is sent to the CLEC.

79. Just as with the xDSL-capable loop, if the loop fails to meet the minimum criteria specified by the CLEC, the LSR is rejected. The CLEC may then cancel the request or supplement the original LSR to order the HFPL “as is” or with conditioning. The CLEC may also opt to change the specified PSD for the requested loop at any time prior to the FOC’s issuance.

80. Pacific makes the same options available to CLECs for the HFPL as for the xDSL-capable loop. As explained above, first, a CLEC can advise Pacific it requires a loop that meets the industry standards for the CLEC’s chosen PSD. If the loop serving the end user does not meet these standards, Pacific notifies the CLEC before a service order is issued. The CLEC then determines whether to proceed with the order. Second, a CLEC can specify on the LSR that it will take the loop “as is,” regardless of whether the loop meets the specifications set by the national standards for the type of xDSL the CLEC intends to provision. Third, a CLEC can specify on the initial LSR that it desires Pacific to perform conditioning shown to be available by the loop

28 FOCs can be returned mechanically or manually, depending on the system the CLEC used when submitting the LSR.
qualification results. CLECs also have the option of requesting conditioning at any time after the loop has been provisioned by Pacific.\(^{29}\)

81. Just as with the xDSL-capable loop, when the pre-qualification is “Green,” indicating that the 26 gauge equivalent theoretical loop length is 12,000 feet or less and the HFPL is not served exclusively by DLC, a CLEC can be reasonably certain that the HFPL will not contain load coils, repeaters, or excessive bridged tap. Nevertheless, if such elements are found, Pacific operations will remove these devices at no charge to the CLEC. The CLEC does not need to request conditioning in this situation. Pacific will condition the HFPL automatically if needed. The standard offered provisioning interval for a non-conditioned HFPL will apply.

82. As shown below, the HPFL UNE order process is identical to that of the xDSL-capable loop qualification process.

\(^{29}\) In addition to the standard ordering options listed above, CLECs may also place orders utilizing the process for the Yellow Zone Trial described previously in this affidavit.
83. An illustration of the HFPL UNE order process follows:

HFPL UNE Order Process

CLEC submits valid LSR to Pacific

Pacific performs mechanized loop qualification*

Does loop meet requirements specified by the CLEC?

YES

Service order issued*

NO

LSR returned to CLEC*

Cancelling received?

YES

LSR is canceled

NO

CLEC submits valid supplemental LSR

* These order processing functions are normally handled electronically without human intervention.

30 Note that this is the same process as the process already in place for stand-alone xDSL-Capable Loops.
Provisioning

Terms and Conditions

84. Pacific provisions HFPL UNEs to CLECs under terms and conditions negotiated in interconnection agreements. Any CLEC can negotiate a customized agreement with Pacific, or can simply adopt the interconnection, service and/or network element arrangements contained in existing, approved agreements.

85. As with xDSL-capable loops, Pacific’s interconnection agreements in California do not require a CLEC to request available loop conditioning. Rather, a CLEC always has the option of obtaining a particular HFPL “as is,” or with any desired available conditioning (for loops with a 26 gauge equivalent loop length of less than 12,000 feet, Pacific automatically performs conditioning at no charge to remove load coils, repeaters, and/or bridged tap in excess of 2,500 feet).

Time Intervals for Provisioning

86. Just as with the xDSL-capable loop, whether or not conditioning is required, Pacific offers CLECs HFPL provisioning intervals that are the same or better than the provisioning intervals available to Pacific’s advanced services affiliate. Provisioning intervals are determined by whether a non-conditioned or conditioned loop is requested. These two provisioning categories are defined as indicated below.
87. The offered provisioning and installation interval for the HFPL UNE, where no conditioning is requested and for orders of one to 20 loops per order or per end user location, is five business days.\(^{31}\) For an HFPL UNE where conditioning is requested, on orders for one to 20 loops per order or per end user customer location, the provisioning and installation interval is ten business days. For CLEC requests of more than 20 HFPL UNEs per order or per end user location, where no conditioning is requested, Pacific will provision the request within 15 business days, or as agreed upon by the parties. Orders for more than 20 HFPL UNEs per order which require conditioning will have a provisioning and installation interval agreed to by the parties. In each instance, Pacific offers CLECs provisioning intervals in parity with Pacific’s advanced services affiliate’s provisioning intervals.

88. Although two providers are involved in providing service over the HFPL UNE, all the central office work required of the data provider may be performed in advance of the due date. This eliminates the need for coordination between Pacific and the data provider and minimizes possible end user down time. Pacific is responsible for

\(^{31}\) Although Pacific’s current generic offering includes a five business day provisioning interval, Pacific is accepting HFPL UNE orders with three business-day intervals.
ensuring that the interruption of Pacific’s end user’s voice service is brief. As the CLEC is establishing new service, interruption of the CLEC’s service is not an issue.

89. As with any new product offering, Pacific has experienced some isolated incidents in the provisioning process requiring additional training of Pacific’s personnel. Pacific is committed to addressing issues on an ongoing basis through the ongoing line-sharing collaborative process and one-on-one communication with CLECs.

SPECTRUM MANAGEMENT

90. As discussed above, when loops adjacent to one another in a binder group are used to provide divergent technologies (e.g., ADSL and SDSL), the two xDSL signals can interfere with one another. It quickly became apparent within the industry that to minimize the potential for such interference in a multiple provider environment, some form of spectrum compatibility and management standards would need to be implemented. National standards setting bodies have worked towards establishing industry consensus on how best to accommodate xDSL-based services on a wireline network originally designed to carry voice transmissions. PSD masks represent these standards. Pacific strongly supports this initiative, as it will allow numerous diverse technologies to coexist efficiently within the network.

91. Accordingly, under Pacific’s current offering, when a CLEC orders an HFPL UNE or an xDSL-capable loop from Pacific, that CLEC provides the PSD mask within which it intends to offer xDSL service. Pacific, in turn, maintains an inventory, which identifies, by PSD, the various advanced services present in the network. As national
industry standard setting bodies promulgate additional standards to address emerging technologies, Pacific will adopt and implement the new standards as well.

92. Pacific has discontinued its selective feeder separation system of binder group management. Binder groups that were previously marked as “ADSL only” and restricted to ADSL and POTS are now open to any form of xDSL service. *See Line Sharing Order*, 14 FCC Rcd at 21,010, ¶ 214. In doing so, Pacific fully complies with CFR Rule 51.232.

LINE SPLITTING

93. Line splitting is the shared use of an unbundled loop for the provision of voice and data services. CLECs have the ability to engage in line splitting today under Pacific’s current offerings.32 Pacific supports line splitting where a CLEC purchases separate elements (including unbundled loops, unbundled switching, and cross-connects for these UNEs) and combines them with their own (or a partner CLEC’s) splitter in a collocation arrangement.

94. CLECs were able to line split even before the *Line Sharing Order*. The *Line Sharing Order* was not necessary to enable one or two CLECs to line split. It was necessary to require an ILEC to share a loop, much like in a line splitting situation, when it remained the voice provider.

95. In order to line split using existing Pacific offerings, a CLEC may purchase an xDSL-capable loop UNE from Pacific and then provide both voice and data services over the loop. If desired, the CLEC may also purchase UNE switching to provide voice

services. A single CLEC may choose to use a loop to provision both data and voice services, or one CLEC could provide voice service and another CLEC could provide data service. Under existing offerings, CLECs may provide voice and data services to customers in a variety of ways.

96. With line splitting, the xDSL-capable loop is terminated at a CLEC’s collocation arrangement where it is connected to a CLEC-owned splitter. The splitter separates the voice and data frequencies. The data portion of the line is routed to the data CLEC’s Digital Subscriber Line Access Multiplexer (“DSLAM”), which may be integrated with the splitter. The data CLEC may or may not be the same as the voice CLEC. Both the splitter and DSLAM are required for line splitting as they are with line sharing. As with line sharing, the data CLEC must be collocated due to technical limitations of xDSL, which require DSLAM equipment be located where the copper loop is terminated. Many DSLAMs have “integrated” splitters, which eliminate the need for a “stand alone” splitter.

97. Typically, the DSLAM and splitter will be located in the data CLEC’s collocation space and the xDSL-capable loop will be terminated there. The CLEC can pre-wire the splitter so that the voice service will be established immediately when the xDSL-capable loop and unbundled switch port are terminated to the CLEC’s collocation arrangement. The data provider will also transmit its data service through the splitter enabling both the voice and data to coexist on the shared facility.

98. The voice provider may use its own switching equipment to provide voice service, or it may purchase UNE switching from Pacific. If the voice CLEC is collocated in the central office, it may choose to use a splitter located in its collocation space to
perform the splitting function, and send the data portion of the service to the data
provider’s DSLAM. However, if the voice CLEC is not collocated in the central
office and wants to purchase UNE switching, the voice CLEC may designate a point
in the data provider’s collocation arrangement where Pacific should terminate the
connection to the switch port.

99. Pacific currently has electronic ordering capabilities for line splitting when the CLEC
is requesting a brand new service arrangement (no reuse of facilities from an existing
service). Pacific, as suggested by the Line Sharing Reconsideration Order,33 is
currently meeting with interested CLECs to develop improved order processes for
situations where a CLEC wishes to engage in line splitting reusing facilities
previously used as part of a UNE-P arrangement or line shared arrangement. As a
result of these meetings, Pacific is currently working to develop a single LSR process
to facilitate these types of requests.

100. Pacific’s current offerings in California thus allow CLECs to engage in line splitting,
and meet all requirements for line splitting. In the Texas 271 Order and again in the
Kansas/Oklahoma 271 Order, the FCC rejected arguments that SWBT did not meet
its line splitting obligations, finding that SWBT’s offering met all FCC
requirements.34 Just as SWBT does in Texas, Kansas, and Oklahoma, Pacific permits
CLECs to engage in line splitting by combining unbundled elements via a CLEC-
provided splitter.

33 Line Sharing Reconsideration Order ¶ 21.
101. The *UNE Remand Order* also established a limited obligation to unbundle packet switching for advanced services. Pacific currently has no packet switching for advanced services within its existing network that meet the unbundling criteria. Specifically, with the exception of the packet switching functionality contained in the Broadband Service offering, Pacific has not deployed packet switches used to provide advanced services outside of its central offices. However, should Pacific deploy any packet switching for advanced services meeting the unbundling requirements, Pacific’s interconnection agreements contain a binding legal commitment to provide CLECs with unbundled access to such packet switching.

102. As I explained in my affidavit in the Kansas/Oklahoma proceeding, the Broadband Service offering is not part of any checklist item – and therefore is not a 271 issue. The FCC properly found that the issue was not ripe for review in that proceeding, and the same pertinent facts exist in California today as in Kansas and Oklahoma.35 I would be involved in any CLEC request for unbundled packet switching made in accordance with FCC rule 51.319(c)(4). However, I have not been informed of any such request in California. Accordingly, as in the Kansas/Oklahoma proceeding, this issue should not be considered as part of this proceeding. Although issues related to SBC’s Broadband Service offering were raised in state 271 proceedings, Pacific will

35 See *Kansas/Oklahoma 271 Order* ¶¶ 244-45.
not reiterate the same arguments at this time because the FCC has made it clear that these issues generally should not be considered part of 271 proceedings.

CONCLUSION

103. Pacific provides CLECs with non-discriminatory access to xDSL-capable loops, the HFPL UNE, line splitting and loop qualification and ensures CLECs have a meaningful opportunity to compete.

104. This concludes my affidavit.